On the commuting graph of non-commutative rings of order $p^nq$
Authors
Abstract:
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring for every $0neq a in RZ(R)$. Also it is shown that if $a,bin RZ(R)$ and $abneq ba$, then $C_R(a)cap C_R(b)= Z(R)$. We show that the commuting graph $Gamma(R)$ is the disjoint union of $k$ copies of the complete graph and so is not a connected graph.
similar resources
On the commuting graph of some non-commutative rings with unity
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with a vertex set $Rsetminus Z(R)$ and two vertices $a$ and $b$ are adjacent if and only if $ab=ba$. In this paper, we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$. It is shown that, $Gamma(R)$ is the disjoint ...
full texton the commuting graph of some non-commutative rings with unity
let r be a non-commutative ring with unity. the commuting graph of $r$ denoted by $gamma(r)$, is a graph with a vertex set $rsetminus z(r)$ and two vertices $a$ and $b$ are adjacent if and only if $ab=ba$. in this paper, we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$. it is shown that, $gamma(r)$ is the disjoint ...
full textExact annihilating-ideal graph of commutative rings
The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.
full textcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولایده آل های 2- جذب کننده در حلقه های جابجایی on the 2-absorbing ideal of commutative rings
چکیده: در این پایان نامه تعمیمی از ایده آل های اول را با عنوان ایده آل های 2- جذب کننده معرفی می کنیم. ایده آل واقعی و ناصفر i از r را ایده آل 2- جذب کننده نامیم، هرگاه به ازای a,b,c ? r ، اگر abc ? i ، آنگاه داشته باشیم ab ? i یا ac ? i یا bc ? i . ویژگی های ایده آل ها و رادیکال آن ها را مورد مطالعه قرار می -دهیم و اطلاعاتی درباره ایده آل های اول وابسته حلقه r/ i به دست می آوریم. در ادامه اید...
On quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
full textMy Resources
Journal title
volume 03 issue 01
pages 1- 6
publication date 2014-08-10
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023